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A mobile impurity coupled to a weakly interacting Bose gas, a Bose polaron, displays several interesting
effects. While a single attractive quasiparticle is known to exist at zero temperature, we show here that the
spectrum splits into two quasiparticles at finite temperatures for sufficiently strong impurity-boson
interaction. The ground state quasiparticle has minimum energy at Tc, the critical temperature for Bose-
Einstein condensation, and it becomes overdamped when T ≫ Tc. The quasiparticle with higher energy
instead exists only below Tc, since it is a strong mixture of the impurity with thermally excited collective
Bogoliubov modes. This phenomenology is not restricted to ultracold gases, but should occur whenever a
mobile impurity is coupled to a medium featuring a gapless bosonic mode with a large population for finite
temperature.
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Mobile impurities in a quantum bath play a fundamental
role in a wide range of systems including metals and
dielectric materials [1], semiconductors [2], 3He─4He
mixtures [3], and high-Tc superconductors [4]. In certain
limits, they provide a paradigmatic realization of Landau’s
fundamental concept of a quasiparticle. The precise exper-
imental measurements on impurity atoms in ultracold
Fermi gases [5–9] combined with several theoretical
investigations [10–18] led to fundamental insights into
this problem. Recently, two experimental groups embedded
impurity atoms in a Bose-Einstein condensate (BEC) and
observed long-lived quasiparticles coined Bose polarons
[19,20]. Bose polarons have been investigated using a
variety of theoretical techniques [21–32], and they have
also been considered in one dimension [33–37].
A qualitatively new feature of the Bose polaron with

respect to polarons in a Fermi gas or in solid state systems
is that the environment undergoes a phase transition to a
BEC at Tc. This changes drastically the low-energy
density-of-states of the environment, and should therefore
affect significantly the polaron. Temperature effects on
Bose polarons have been examined so far only theoreti-
cally, either in the mean-field regime [38], at high temper-
ature [39], or for immobile Rydberg atoms [30].
Here, we develop a strong coupling diagrammatic scheme

designed to include scattering processes important for finite
temperature. Using this, we show that the polaron splits into
two quasiparticle states for 0 < T < Tc for strong attractive
coupling. The energy of the lower polaron depends non-
monotonically on a temperature with minimum at Tc,
whereas the energy of the upper polaron increases until
its quasiparticle residue vanishes at Tc. The generic

mechanism causing these effects is the coupling between
the impurity and low energy Bogoliubov modes with an
infrared divergent population for finite T. Consequently,
similar effects should occur whenever a mobile impurity is
coupled to a gapless bosonicmode, as for example inHelium
liquids or quantum magnets. Indeed, an analogous splitting
has been predicted for quasiparticle modes in hot electron
and quark-gluon plasmas [40–43], providing an interesting
link between low and high energy quantum phenomena.
System.—We consider a single impurity particle of mass

m, immersed in a gas of weakly interacting bosons of mass
mB and density n at temperature T. We take ℏ ¼ kB ¼ 1,
and we measure momenta and energies in units of kn ¼
ð6π2nÞ1=3 and En ¼ k2n=2mB. The boson-boson interaction
is short-ranged and characterized by a scattering
length aB, and the condition of weak interaction means
0 < knaB ≪ 1. Below the critical temperature Tc ¼
½4=ð3 ffiffiffi

π
p

ζð3=2ÞÞ�2=3En ≈ 0.436En, the bosons are accu-
rately described using Bogoliubov theory [44]. The con-
densate density is n0 ¼ n½1 − ðT=TcÞ3=2� and the chemical
potential is μB ¼ T Bn0 with T B ¼ 4πaB=mB. The
dispersion of the excitations reads Ek¼½ϵBkðϵBkþ2μBÞ�1=2,
with ϵBk ¼ k2=2mB. Above Tc, the condensate disappears,
the excitations become free bosons, Ek ¼ ϵBk, and the
chemical potential reduces to that of an ideal Bose gas.
The impurity interacts with the bath through a short-ranged
potential described by the s-wave scattering length a. Given
that we study a single impurity, we consider its effect on the
Bose cloud negligible.
Diagrammatic analysis.—An impurity with momentum

k is described by the imaginary-time Green’s function
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Gðk;iωjÞ¼1=½G0ðk;iωjÞ−1−Σðk;iωjÞ], where G0ðk;iωjÞ¼
ðiωj−ϵkÞ−1 with ϵk ¼ k2=2m is the Green’s function of a
free impurity, and ωj ¼ 2πjT is a Matsubara frequency
[44,45]. The key quantity to calculate is the impurity self-
energy Σðk; iωjÞ, and in the presence of strong interactions,
we must resort to suitable approximations. As a minimum,
we have to include the ladder diagrams of Fig. 1(a), which
describe the energy shift due to two-body processes
between the impurity and Bogoliubov excitations. This
yields the ladder scattering matrix T ðp; iωjÞ ¼
1=½T −1

v − Πðp; iωjÞ�, where T v ¼ 2πa=mr is the vacuum
scattering amplitude, mr ¼ mmB=ðmþmBÞ is the reduced
mass, and Πðp;iωjÞ¼

R ½ðd3kÞ=ðð2πÞ3Þ�f½ðu2kð1þfkÞ�=
½iωj−Ek−ϵkþp�þ½ðv2kfkÞ=ðiωjþEk−ϵkþpÞ�þð2mr=k2Þg
is the renormalized pair propagator for an impurity and a
boson from the bath. Here, fk ¼ 1=½expðEk=TÞ − 1� is the
Bose distribution, and u2k ¼ ½ðϵBk þ μBÞ=Ek þ 1�=2 and
v2k ¼ u2k − 1 are the Bogoliubov coherence factors.
A very recent perturbative analysis [46] showed that

events where the impurity scatters excited bosons into the
BEC are important at finite temperatures. To include these
events, which are not contained in the ladder approxima-
tion, we introduce the “extended” scattering matrix ~T
shown in Fig. 1(b), and given by

~T ðp; iωjÞ ¼
1

T −1
v − Πðp; iωjÞ − n0G0ðp; iωjÞ

: ð1Þ

Compared to the ladder approximation T , the denominator
of ~T contains the additional term n0G0ðp; iωjÞ, which
describes pair propagation where the entire momentum is
carried by the impurity while the boson is in the BEC. This
process is represented by the third term in Fig. 1(b).
As shown in Fig. 1(c), within the extended scheme the

impurity self-energy is Σ ¼ Σ0 þ Σ1, where

Σ0ðp; iωjÞ ¼ n0T ðp; iωjÞ ð2Þ

is the energy shift experienced by the impurity through
interactions with the condensate only, and

Σ1ðp; iωjÞ ¼
Z

d3k
ð2πÞ3 ½u

2
kfk ~T ðkþ p; iωj þ EkÞ

þ v2kð1þ fkÞ ~T ðkþ p; iωj − EkÞ� ð3Þ

is the energy shift coming from interactions with bosons
excited out of the BEC. Note that replacing T with ~T in Σ0

is not allowed, since this would lead to double counting of
diagrams. As shown in Fig. 1(c), Σ1 may be decomposed in
two contributions: one where the impurity scatters a boson
from an excited state to another (second diagram), and one
where the excited bosons are scattered virtually back into
the BEC (last diagram). An approximation similar to ours
was used in Ref. [47] for analyzing Bose-Fermi mixtures,
while the ladder approximation ΣL (considered at T ¼ 0 in
Ref. [27]) is recovered by replacing ~T with T in (3), which
is equivalent to neglecting the rightmost diagram in
Fig. 1(c).
The spectral function of the impurity particle with

momentum p is given by Aðp;ωÞ ¼ −2Im½Gðp;ωÞ�, where
we have performed the usual analytic continuation
iωj → ωþ i0þ, suppressing i0þ for notational simplicity.
A quasiparticle corresponds to a sharp peak in the spectral
function. Its energy is found by solving

ωp ¼ ϵp þ Re½Σðp;ωpÞ�; ð4Þ

and the quasiparticle is well-defined when the
damping Γ ¼ −ZpIm½Σðp;ωpÞ� is small. Here Zp ¼
1=f1 − ∂ωRe½Σðp;ωÞ�jωp

g is the residue, a measure for
the spectral weight of the quasiparticle peak.
Results.—We now show numerical results for the proper-

ties of the dressed impurity, taking for concreteness equal
impurity and boson masses m ¼ mB corresponding to the
Aarhus experiment [19]. Having this experiment in mind,
we also focus on zero momentum polarons. Unless other-
wise specified, we set knaB ¼ 0.01.
The impurity spectral function is shown in Fig. 2 as a

function of temperature for kna ¼ −1. We plot the results
obtained from both the extended scheme and the ladder
approximation. For T ¼ 0, the two schemes give essentially
the same result: The spectral function exhibits a single
narrow peak corresponding to a quasiparticle, the attractive
polaron, with energy ω≃ −0.3En. This is not surprising,
since knaB ¼ 0.01 ≪ 1 and very few bosons are excited
out of the BEC at T ¼ 0, so that Σ1 is negligible in both the
ladder and the extended scheme.
Significant differences between the two approximations

appear however for T > 0. As shown in Fig. 2, while the
spectral function in the ladder approximation exhibits a
single polaron peak, corresponding to a single quasiparticle
solution of ωL of (4), the extended approximation yields

(a) (d)

(b)

(c)

FIG. 1. Feynman diagrams yielding the self-energy Σwithin the
“extended” ladder approximation. Thin blue lines represent the
bare impurity propagator, solid red lines are Bogoliubov propa-
gators, dashed red lines are condensate bosons, and wavy lines
represent the vacuum scattering matrix T v. The ladder self-
energy is indicated by ΣL, and the double blue line is an impurity
dressed by the condensate only.
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two quasiparticle peaks in the spectral function.
Correspondingly, there are two quasiparticle (polaron)
solutions to (4), ω↑ and ω↓. Just above T ¼ 0, the two
sharp polaron peaks emerge symmetrically out of the ladder
polaron with similar spectral weight. In fact, their residues
Z↑ and Z↓ are both close to ZL=2. Both features can be
explained by a pole expansion valid for knaB ≪ 1 [48]. For
weak coupling, ω↑;↓ ≃ ω0ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0nex=n0

p Þ, where ω0 ¼
n0T v is the energy of a zero momentum impurity dressed
by the condensate only, and nex ¼ n − n0ðTÞ is the density
of bosons excited out of the condensate [48]. The energy of
the upper polaron ω↑ increases with T, but its spectral
weight drops to zero as Tc is approached. The energy of the
lower polaron ω↓ instead decreases with temperature,
reaching a minimum at Tc, after which it increases. For
T ≥ Tc there is no BEC, and the extended and ladder
approximation coincide. The width of the lower polaron
peak increases with temperature reflecting increased damp-
ing due to scattering on thermally excited bosons.
Eventually, the polaron becomes ill-defined for T ≫ Tc.
In Fig. 3, we show the quasiparticle spectrum and

residues at unitarity 1=kna ¼ 0, obtained by solving
(4). This shows the same physics as what we found for
kna ¼ −1 but scaled to larger binding energies. Using a
virial expansion to compute the self-energy for T ≫ Tc,
and assuming also T ≫ 1=mra2, we obtain

Σð0; 0Þ ≈ −i
4En

3π3=2

�
mB

mr

�
2

ffiffiffiffiffiffi
En

T

r
: ð5Þ

Thus, at a high temperature, the polaron energy approaches
zero, and the quasiparticle becomes overdamped. Our
numerical results converge to (5) for T ≫ Tc, although
such high temperatures are not shown in Figs. 2 and 3.
In Fig. 4, we plot the energy of the attractive polaron as a

function of the interaction strength 1=kna, for knaB ¼ 0.01

FIG. 2. Spectral function AðωÞ of the attractive polarons (in
units of 1=En) versus T at knaB ¼ 0.01 and kna ¼ −1, computed
using the ladder approximation (dashed lines and lighter shading)
and our extended model (thick lines and darker shading). For
clarity, we added an artificial tiny width of 0.01En to the spectral
lines. The thick solid lines in the plane show the polaron energies,
as given by Eq. (4), and the width of their shading gives the
damping Γ. The dash-dotted lines are the low temperature result
ω0ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0nex=n0

p Þ.

FIG. 3. Energies (top) and residues (bottom) of the attractive
polarons for 1=kna ¼ 0 in the ladder approximation (dashed line)
and from our extended model (solid lines). The width of the
shading around the energies gives the damping Γ. We stop
plotting ω↑ when its residue is below 5%. The insets depict the
spectral function AðωÞ at T ¼ 0.1Tc (left) and T ¼ 0.8Tc (right).
The red line shows Z↑ þ Z↓.

FIG. 4. Energy (top) and residue (bottom) of the attractive
polarons versus interaction strength, at T ¼ 0 (blue), T ¼ 0.5Tc
(yellow), and T ¼ Tc (red). The filled blue circles in the energy
plot indicate the results of the ladder approximation at T ¼ 0, and
the two black lines (filled diamonds) are the mean field results
ω ¼ 2πa=mr (right) and ω ¼ −1=ð2mra2Þ þ μB (left), valid,
respectively, for −1=kna ≫ 1 and −1=kna ≪ −1.
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and at various temperatures. For all coupling strengths
a≳ aB, we observe that the single attractive polaron
present at T ¼ 0 splits into two polarons at intermediate
temperatures, of which only the lower one survives
at T ≥ Tc.
To analyze the origin of the splitting, in Fig. 5 we plot

Re½ΣðωÞ� for kna ¼ −0.1 and various values of knaB and
T=Tc. Graphically, the quasiparticle solutions (4) are
determined by the crossing of Re½ΣðωÞ� with the diagonal
dashed line giving ω. Focus first on the blue lines relevant
for a very small value of knaB. For T ¼ 0 (blue dotted line,
almost horizontal) there is only one solution close to ω0.
However, at finite temperatures Σ1ðωÞ develops a reso-
nance structure around ω0 and two further crossings appear.
At the middle crossing (the one with ∂ωRe½Σ� > 0) the self-
energy has a large imaginary part, so that this does not
correspond to a well-defined excitation; as a consequence,
the spectrum contains now two quasiparticle solutions. The
resonance at ω ∼ ω0 arises because the extended matrix ~T
in (1) has a pole at ~ωp ¼ ϵp þ Σ0ð ~ωp;pÞ, which is very
close to ω0 for T ¼ 0 and p → 0, since the number of
excited bosons is negligible. For T > 0, the Bose distri-
bution fk is infrared divergent, which in combination with
the pole of the ~T matrix means that the integrand in (3) for
Σ1 is very large for k → 0, changing sign around
ω ∼ ~ω ≈ ω0. This results in the resonance structure shown
in Fig. 5, a completely nonperturbative feature of the
extended scheme. The energy splitting between ω↑ and
ω↓ increases with temperature, since more particles are
thermally excited out of the BEC leading to a more
pronounced resonance structure. This explains the behavior
seen in Figs. 2–3.
The physical interpretation of the resonance feature of ~T

is that the coupling between the impurity and the low-lying
Bogoliubov modes gets strongly enhanced by the presence
of the macroscopically occupied condensate modes for

k → 0. The coupling to the BEC itself, however, is via the
usual ladder scattering matrix T . At finite temperatures
0 < T < Tc, the impurity couples to both the BEC and a
macroscopic amount of excited bosons, and the hybridi-
zation between these two terms leads to the emergence of
two quasiparticles.
Increasing knaB has two main effects on the resonance

structure of Σ. First, it becomes less pronounced, since the
low-energy density-of-states of the BEC decreases due to
the stiffening of the Bogoliubov dispersion. Second, it
moves to lower energies because of the increased effect
of the coherence factors uk, vk. Indeed, in the weak
coupling limit, the resonance is approximately located at
n0ðT v − T BÞ [48] (these energies are plotted as vertical
dashed lines in Fig. 5). It follows from these two effects that
at low temperatures, only one quasiparticle solution (the
upper polaron) survives in the limit of weak impurity-bath
coupling jaj≲ aB ≪ 1=kn, and the energy of this solution
approaches the first order result nT v, in agreement with
perturbation theory [48].
An important question concerns whether three-body

losses wash out the effects predicted in this paper. Three-
body losses were investigated in the Aarhus and JILA
experiments. Both groups found that they have surprisingly
small effects, in the sense that the observed spectra could be
explained theoretically without introducing three-body
losses. Since our predicted temperature shifts and splittings
have the same order of magnitude as the polaron energy at
T ¼ 0, we conclude that their observation is likely robust
towards three-body losses.
Conclusions and outlook.—Using a diagrammatic resum-

mation scheme designed to include scattering terms that are
crucial at finite temperature, we showed that the Bose
polaron has a highly nontrivial temperature dependence.
For attractive interactions, the polaron splits into two
quasiparticle states for 0 < T < Tc. The energy of the lower
polaron displays aminimumatTc, whereas the energy of the
upper one increases with T until its residue vanishes at Tc.
These effects arise due to the coupling of the impurity to the
Bogoliubov spectrum, whose population has an infrared
divergence for finite temperature, and the enhancement of
the coupling due to the presence of the condensate mode.
Both the splitting of the polaron into two quasiparticles and
the temperature dependence of their energies should be
observable in experiments with ultracold gases, provided
that specific care is taken tominimize the frequency and trap
averaging of the spectral signal [19,20].
Here we considered only negative energies. It would be

interesting to investigate whether the discrepancy found in
Ref. [19] between theory and experiment at positive
energies could be due to finite temperature effects. A
complete treatment of this subtle point requires a self-
consistent calculation, which is beyond the scope of the
present Letter, but a brief discussion of the matter is
presented in the Supplemental Material [48].

FIG. 5. Real part of the self-energy Σðp ¼ 0;ωÞ for
kna ¼ −0.1, at T ¼ 0 (blue dotted line, almost horizontal), T ¼
0.05Tc (dashed) and T ¼ 0.1Tc (solid). The different colors
correspond to various values of knaB. The diagonal black line
represents ω, and the vertical lines denote n0ðT v − T BÞ.
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Let us conclude by noting that the physical mechanism
leading to the two main results of our paper, the strong
temperature dependence and the quasiparticle splitting, is
generic: both effects are caused by the condensed Bose gas
breaking a continuous symmetry below Tc, so that a gapless
mode appears, leading to a dramatic change in the low
energy density of states to which the impurity couples. Our
findings are therefore relevant to a wide class of systems
consisting of an impurity immersed in a medium breaking a
continuous symmetry. This includes impurities in liquid
Helium [3], normal and high-Tc superconductors [4],
ultracold Fermi superfluids [18], and quantum magnets
[51]. A similar splitting of a fermionic quasiparticle into
two modes due to the coupling to a linear bosonic spectrum
has indeed been predicted in hot quark-gluon plasmas, and
in Yukawa and QED theories [40–43]. Because of its
collective nature, the emergent quasiparticle was dubbed a
plasmino [52]. Our results therefore provide an avenue to
study this interesting prediction in the controlled environ-
ment of a quantum gas.
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